欧易

欧易(OKX)

国内用户最喜爱的合约交易所

火币

火币(HTX )

全球知名的比特币交易所

币安

币安(Binance)

全球用户最多的交易所

Python集合是什么,为什么应该使用以及如何使用?

时间:2022-10-09 17:44:09 | 浏览:293

编译自: https://www.pythoncheatsheet.org/blog/python-sets-what-why-how 作者: Wilfredinni译者: MjSevenPython Sets: What, Why and

编译自:
https://www.pythoncheatsheet.org/blog/python-sets-what-why-how

作者: Wilfredinni

译者: MjSeven

Python Sets: What, Why and How

Python 配备了几种内置数据类型来帮我们组织数据。这些结构包括列表、字典、元组和集合。

根据 Python 3 文档:

集合是一个无序集合,没有重复元素。基本用途包括成员测试和消除重复的条目。集合对象还支持数学运算,如并集、交集、差集和对等差分。

在本文中,我们将回顾并查看上述定义中列出的每个要素的示例。让我们马上开始,看看如何创建它。

初始化一个集合

有两种方法可以创建一个集合:一个是给内置函数 set() 提供一个元素列表,另一个是使用花括号 {}。

使用内置函数 set() 来初始化一个集合:

>>> s1 = set([1, 2, 3])

>>> s1

{1, 2, 3}

>>> type(s1)

<class "set">

使用 {}:

>>> s2 = {3, 4, 5}

>>> s2

{3, 4, 5}

>>> type(s2)

<class "set">

>>>

如你所见,这两种方法都是有效的。但问题是,如果我们想要一个空的集合呢?

>>> s = {}

>>> type(s)

<class "dict">

没错,如果我们使用空花括号,我们将得到一个字典而不是一个集合。=)

值得一提的是,为了简单起见,本文中提供的所有示例都将使用整数集合,但集合可以包含 Python 支持的所有 可哈希的 (hashable) 数据类型。换句话说,即整数、字符串和元组,而不是列表或字典这样的可变类型。

>>> s = {1, "coffee", [4, "python"]}

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: "list"

既然你知道了如何创建一个集合以及它可以包含哪些类型的元素,那么让我们继续看看为什么我们总是应该把它放在我们的工具箱中。

为什么你需要使用它

写代码时,你可以用不止一种方法来完成它。有些被认为是相当糟糕的,另一些则是清晰的、简洁的和可维护的,或者是 “ Python 式的 (pythonic)”。

根据 Hitchhiker 对 Python 的建议 :

当一个经验丰富的 Python 开发人员( Python 人(Pythonista))调用一些不够 “ Python 式的(pythonic)” 的代码时,他们通常认为着这些代码不遵循通用指南,并且无法被认为是以一种好的方式(可读性)来表达意图。

让我们开始探索 Python 集合那些不仅可以帮助我们提高可读性,还可以加快程序执行时间的方式。

无序的集合元素

首先你需要明白的是:你无法使用索引访问集合中的元素。

>>> s = {1, 2, 3}

>>> s[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: "set" object does not support indexing

或者使用切片修改它们:

>>> s[0:2]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: "set" object is not subscriptable

但是,如果我们需要删除重复项,或者进行组合列表(与)之类的数学运算,那么我们可以,并且应该始终使用集合。

我不得不提一下,在迭代时,集合的表现优于列表。所以,如果你需要它,那就加深对它的喜爱吧。为什么?好吧,这篇文章并不打算解释集合的内部工作原理,但是如果你感兴趣的话,这里有几个链接,你可以阅读它:

  • 时间复杂度

  • set() 是如何实现的?

  • Python 集合 vs 列表

  • 在列表中使用集合是否有任何优势或劣势,以确保独一无二的列表条目?

没有重复项

写这篇文章的时候,我总是不停地思考,我经常使用 for 循环和 if 语句检查并删除列表中的重复元素。记得那时我的脸红了,而且不止一次,我写了类似这样的代码:

>>> my_list = [1, 2, 3, 2, 3, 4]

>>> no_duplicate_list = []

>>> for item in my_list:

... if item not in no_duplicate_list:

... no_duplicate_list.append(item)

...

>>> no_duplicate_list

[1, 2, 3, 4]

或者使用列表解析:

>>> my_list = [1, 2, 3, 2, 3, 4]

>>> no_duplicate_list = []

>>> [no_duplicate_list.append(item) for item in my_list if item not in no_duplicate_list]

[None, None, None, None]

>>> no_duplicate_list

[1, 2, 3, 4]

但没关系,因为我们现在有了武器装备,没有什么比这更重要的了:

>>> my_list = [1, 2, 3, 2, 3, 4]

>>> no_duplicate_list = list(set(my_list))

>>> no_duplicate_list

[1, 2, 3, 4]

>>>

现在让我们使用 timeit 模块,查看列表和集合在删除重复项时的执行时间:

>>> from timeit import timeit

>>> def no_duplicates(list):

... no_duplicate_list = []

... [no_duplicate_list.append(item) for item in list if item not in no_duplicate_list]

... return no_duplicate_list

...

>>> # 首先,让我们看看列表的执行情况:

>>> print(timeit("no_duplicates([1, 2, 3, 1, 7])", globals=globals(), number=1000))

0.0018683355819786227

>>> from timeit import timeit

>>> # 使用集合:

>>> print(timeit("list(set([1, 2, 3, 1, 2, 3, 4]))", number=1000))

0.0010220493243764395

>>> # 快速而且干净 =)

使用集合而不是列表推导不仅让我们编写更少的代码,而且还能让我们获得更具可读性和高性能的代码。

注意:请记住集合是无序的,因此无法保证在将它们转换回列表时,元素的顺序不变。

Python 之禅 :

优美胜于丑陋(Beautiful is better than ugly.)

明了胜于晦涩(Explicit is better than implicit.)

简洁胜于复杂(Simple is better than complex.)

扁平胜于嵌套(Flat is better than nested.)

集合不正是这样美丽、明了、简单且扁平吗?

成员测试

每次我们使用 if 语句来检查一个元素,例如,它是否在列表中时,意味着你正在进行成员测试:

my_list = [1, 2, 3]

>>> if 2 in my_list:

... print("Yes, this is a membership test!")

...

Yes, this is a membership test!

在执行这些操作时,集合比列表更高效:

>>> from timeit import timeit

>>> def in_test(iterable):

... for i in range(1000):

... if i in iterable:

... pass

...

>>> timeit("in_test(iterable)",

... setup="from __main__ import in_test; iterable = list(range(1000))",

... number=1000)

12.459663048726043

>>> from timeit import timeit

>>> def in_test(iterable):

... for i in range(1000):

... if i in iterable:

... pass

...

>>> timeit("in_test(iterable)",

... setup="from __main__ import in_test; iterable = set(range(1000))",

... number=1000)

.12354438152988223

注意:上面的测试来自于 这个 StackOverflow 话题。

因此,如果你在巨大的列表中进行这样的比较,尝试将该列表转换为集合,它应该可以加快你的速度。

如何使用

现在你已经了解了集合是什么以及为什么你应该使用它,现在让我们快速浏览一下,看看我们如何修改和操作它。

添加元素

根据要添加的元素数量,我们要在 add() 和 update() 方法之间进行选择。

add() 适用于添加单个元素:

>>> s = {1, 2, 3}

>>> s.add(4)

>>> s

{1, 2, 3, 4}

update() 适用于添加多个元素:

>>> s = {1, 2, 3}

>>> s.update([2, 3, 4, 5, 6])

>>> s

{1, 2, 3, 4, 5, 6}

请记住,集合会移除重复项。

移除元素

如果你希望在代码中尝试删除不在集合中的元素时收到警报,请使用 remove()。否则,discard() 提供了一个很好的选择:

>>> s = {1, 2, 3}

>>> s.remove(3)

>>> s

{1, 2}

>>> s.remove(3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: 3

discard() 不会引起任何错误:

>>> s = {1, 2, 3}

>>> s.discard(3)

>>> s

{1, 2}

>>> s.discard(3)

>>> # 什么都不会发生

我们也可以使用 pop() 来随机丢弃一个元素:

>>> s = {1, 2, 3, 4, 5}

>>> s.pop() # 删除一个任意的元素

1

>>> s

{2, 3, 4, 5}

或者 clear() 方法来清空一个集合:

>>> s = {1, 2, 3, 4, 5}

>>> s.clear() # 清空集合

>>> s

set()

union()

union() 或者 | 将创建一个新集合,其中包含我们提供集合中的所有元素:

>>> s1 = {1, 2, 3}

>>> s2 = {3, 4, 5}

>>> s1.union(s2) # 或者 "s1 | s2"

{1, 2, 3, 4, 5}

intersection()

intersection 或 & 将返回一个由集合共同元素组成的集合:

>>> s1 = {1, 2, 3}

>>> s2 = {2, 3, 4}

>>> s3 = {3, 4, 5}

>>> s1.intersection(s2, s3) # 或者 "s1 & s2 & s3"

{3}

difference()

使用 diference() 或 - 创建一个新集合,其值在 “s1” 中但不在 “s2” 中:

>>> s1 = {1, 2, 3}

>>> s2 = {2, 3, 4}

>>> s1.difference(s2) # 或者 "s1 - s2"

{1}

symmetric_diference()

symetric_difference 或 ^ 将返回集合之间的不同元素。

>>> s1 = {1, 2, 3}

>>> s2 = {2, 3, 4}

>>> s1.symmetric_difference(s2) # 或者 "s1 ^ s2"

{1, 4}

结论

我希望在阅读本文之后,你会知道集合是什么,如何操纵它的元素以及它可以执行的操作。知道何时使用集合无疑会帮助你编写更清晰的代码并加速你的程序。

如果你有任何疑问,请发表评论,我很乐意尝试回答。另外,不要忘记,如果你已经理解了集合,它们在 Python Cheatsheet 中有自己的 一席之地 ,在那里你可以快速参考并重新认知你已经知道的内容。


via: https://www.pythoncheatsheet.org/blog/python-sets-what-why-how

作者: wilfredinni 译者: MjSeven 校对: wxy

本文由 LCTT 原创编译, Linux中国 荣誉推出

点击“了解更多”可访问文内链接

相关资讯

零基础学Python:Python五种Python解释器分享给你

不论你是Python新手零基础入门Python还是对于Python有了一定的经验积累,这里跟大家分享5个Python计时器,希望伙伴们有能用得上的!Python是一门解释器语言,代码想运行,必须通过解释器执行,Python存在多种解释器,分

Python之父:Python4.0可能不会来了

机器之心报道编辑:力元、蛋酱2020 年 1 月 1 日,Python 官方结束了对 Python 2 的维护,意味着 Python 2 完全退休,进入 Python 3 时代。之后,关于 Python 4 的发布排期也成为了社区的热门议题

python入门之python简介

一、python了解python 是脚本语言。python 是一种面向对象的解释型计算机程序设计语言。语法简洁清晰,特色之一是强制用空白符作为语句缩进。优点:跨平台、胶水语言、开源免费、丰富的库 。缺点:运行速度慢、代码不能加密、场景、数据

最新的python,整整16个G,附零基础入门Python思维导图

思维导图是整理知识的一种非常有效的手段,这里分享几张 Python 基础学习的思维导图,可以帮助自己巩固下基础,有需要的小伙伴可以加紧时间收藏哦!获取方式:

什么是Python?为什么要学习Python?

第一期计算机等考二级程序设计科目的学习,我们从简单易学的Python开始,今天,就让我们揭开它神秘的面纱!我们先看三组数据:第一组呢是TIOBE指数排行,可以看到我们的Python在今年三月份排在了榜首的位置,相比去年的三月份,Python

Python:是!“用Python的,全是假程序员”!HR:太真实……

都说Python什么都能做,本来我是不信的!直到我在CSDN站内看到了一件真事儿:一位博主贴出了自己10分钟用Python搭建小说网站的全过程!全程只用了2步操作,简直太秀了!!……第一步:爬取小说数据库第二步:用Python的热门框架Dj

封神级Python开发核心知识点笔记!一篇带你学透Python

之前老看Java岗的一个朋友炫耀他的一份Java核心知识点笔记,当时,我内心毫无波澜,只有一点点酸……其实Python开发也有很多知识点,我一直一来就想要一份Python核心知识点笔记来帮助自己查漏补缺,后来想想,既然一直没有找到让我满意的

明年至少令Python提速2倍?Python之父给出爆料

去年 11 月,退休失败的 Python 之父 Guido van Rossum 在推特上宣布,退休生活太无聊,从而加入了微软开发者部门。微软自然支持优秀人才的发展,所以赋予了 Guido van Rossum “自由选择项目”的权利,Gu

Python入门教程:超详细1小时学会Python

小编贴心提醒,本文阅读时间9分钟1.Hello world安装完Python之后,打开IDLE(Python GUI) ,该程序是Python语言解释器,你写的语句能够立即运行。我们写下一句著名的程序语句:并按回车,你就能看到这句被K&R引

想学习Python不知从何学起?一份超详细Python入门资料,干货满满

Python是近年来非常火热的一门编程语言,Python 语言最大的特点就是简单,该特点主要体现在以下 2 个方面:1. Python 语言的语法非常简洁明了,即便是非软件专业的初学者,也很容易上手。2. 和其它编程语言相比,实现同一个功能

python入门基础教学,再不学python就晚了

经过了前一段时间的python学习,那么今天我们来学习一下字典,首先来看一个简单的字典:在python中,字典是一系列键-值对,每个键都与一个值相关联,例如前面的color和age就是键,yelllow和23就是他们分别对应的值对1.访问字

学习Python你一定要知道的知识Python解释器的作用和分类有哪些

之前已经讲解了Python解释器的下载和安装,现在就讲下解释器的作用和分类,在讲解任何Python代码之前我们得先知道解释器概念和作用,因为解释器扮演的角色是非常重要的。一、解释器的作用****作用:运行文件(运行代码)****Python

如何在PythonIDLE中查看Python中turtle库中所有方法及用法

在IDLE中点击help中的Python Docs找到“Python Docs”然后就进入Python文档的界面,在左边找到“搜索”按钮,并点击。找到“搜索”按钮在搜索框中搜索所需要的库名称或者函数名称,就能含有该关键词对应的文件。你会在这

7步搞定Python数据可视化,大牛出品教程,Jupyter、Colab版都有

郭一璞 发自 凹非寺 量子位 报道 | 公众号 QbitAI做图表,谁不会?打开Excel,自动就可以生成各种各样的图表。但你看这些图表呢?结合真实地理数据,展现美国每个县的失业率。全球自然灾害统计,类型、规模、时间,一目了然。甚至还有可爱

分析Python3中的bytes和str类型

从例子可以看出,s是个字符串类型。Python有个内置函数bytes()可以将字符串str类型转换成bytes类型,b实际上是一串01的组合,但为了在ide环境中让我们相对直观的观察,它被表现成了b’xe4xb8xadxe6x96

友情链接

网址导航 SEO域名抢注宝宝起名网妈妈知道币圈欢乐谷游玩攻略网昆仑山游玩攻略深圳新闻资讯网电烤箱品牌网张员瑛歌迷网草莓种植网灭蚊灯品牌网清源山旅游攻略北京旅游资讯网九寨沟旅游攻略网张子枫影迷网今日太原桂圆龙眼网遵义新闻门户网郭姓氏取名网
python编程教学网-python数据库开发教程、python基础知识入门、python数据库编程入门、python语法基础、python下载安装教程、python下载手机版、python翻译器下载手机版、python翻译器代码、python语言翻译、python基础代码、python编程自学网。
python编程教学网 dadeji.cn ©2022-2028版权所有